2 research outputs found

    Understanding the Interactions of Guanine Quadruplexes with Peptides as Novel Strategies for Diagnosis or Tuning Biological Functions

    Get PDF
    Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions in both cells and viruses. The specific interactions of peptides with G4s, as well as an understanding of the factors driving the specific recognition are important for the rational design of both therapeutic and diagnostic agents. In this review, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of current analytic approaches. We also show how the combined use of high-level molecular simulation techniques and experimental spectroscopy is the best avenue to design specifically tuned and selective peptides, thus leading to the control of important biological functions

    Structural and dynamic determinants for highly selective RET kinase inhibition reveal cryptic druggability.

    Get PDF
    The structural and dynamic determinants for highly selective RET kinase inhibition are poorly understood. Here we demonstrate by applying an integrated structural, computational and biochemical approach that the druggability landscape of the RET active site is determined by the conformational setting of the ATP-binding (P-) loop and its coordination with the αC helix. Open and intermediate P-loop structures display additional druggable vulnerabilities within the active site that were not exploited by first generation RET inhibitors. We identify a cryptic pocket adjacent to the catalytic lysine formed by K758, L760, E768 and L772, that we name the post-lysine pocket, with higher druggability potential than the adenine-binding site and with important implications in the regulation of phospho-tyrosine kinase activity. Crystal structure and simulation data show that the binding mode of highly-selective RET kinase inhibitors LOXO-292 and BLU-667 is controlled by a synchronous open P-loop and αC-in configuration that allows accessibility to the post-lysine pocket. Molecular dynamics simulation show that these inhibitors efficiently occupy the post-lysine pocket with high stability through the simulation time-scale (300 ns), with both inhibitors forming hydrophobic contacts in the pocket further stabilized by pi-cation interactions with the catalytic K758. Engineered mutants targeting the post-lysine pocket impact on inhibitor binding and sensitivity, as well as RET tyrosine kinase activity. The identification of the post-lysine pocket as a cryptic druggable vulnerability in the RET kinase and its exploitation by second generation RET inhibitors has important implications for future drug design and the development of personalized therapies for patients with RET-driven cancers.We thank the Centro Nacional de Investigaciones Oncológicas (CNIO), which is supported by the Instituto de Salud Carlos III and recognized as a “Severo Ochoa” Centre of Excellence (ref. CEX2019-000891-S, awarded by MCIN/AEI/ 10.13039/501100011033) for core funding and supporting this study. This work was further supported by projects: BFU2017-86710-R funded by MCIN/ AEI /10.13039/501100011033 and ERDF “A way of making Europe”, PID2020-117580RB-I00 funded by MCIN/ AEI /10.13039/501100011033, RYC-2016-1938 funded by MCIN/AEI /10.13039/501100011033 and ESF “Investing in your future”, and a Marie Curie WHRI-ACADEMY International grant (number 608765) to IP-M and a CNIO-Friends predoctoral Carmen Gloria Bonnet Fellowship to MAS.N
    corecore